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Abstract. We introduce an iteration rule for real numbers capable to generate attractors with
dragon-, snowflake-, sponge-, or Swiss-flag-like cross sections. The idea behind it is the
mapping of a torus into two (or more) shrunken and twisted tori located inside the previous
one. Three distinct parameters define the symmetry, the dimension, and the connectedness or
disconnectedness of the fractal object. For some selected triples of parameter values, a couple
of well known fractal geometries (e.g. the Cantor set, the Sierpinski gasket, or the Swiss flag)
can be gained as special cases.

1. Introduction

The concept of fractality has gained considerable importance to grasp a variety of different
structures in nature [1–3]. Whereas iterated function systems are known to produce ferns
and trees, the shape of coast lines, clouds, cancer etc and are characterized by their fractal
dimensions. As reported elsewhere [4–7], fractal behaviour can be interpreted as being
originally produced by an instability and a chaotic mixing. Therefore, the fractality of an
object can be tuned by the ratio of two parameters. Compared with the richness of different
forms observed in nature, the characterization by only determining the fractal dimension is
a crude simplification. Hereto, Mandelbrot [1] has proposed to introduce a further measure
called ‘lacunarity’ providing additional information about the shape. A further classification
of a structure concerns its symmetry.

In the present paper, we introduce a new iteration rule that is able to produce fractal
objects with different symmetry, lacunarity, and fractal dimension which are either connected
or disconnected. The set of objects generated even embraces fractal objects well known
from other iteration rules. Our paper is organized as follows. In section 2, the iteration
rule is introduced. Section 3 describes an alternative numerical algorithm to determine the
fractal cross sections and their blow-up. Sections 4 and 5 give some selected examples of
cross sections with different symmetry.

2. The iteration rule

In order to capture the attractor geometry, we propose an elementary iteration rule that is
able to generate different complex fractals under variation of three control parameters. We
deal with a fractal structure generated by mapping a torus (in the (x, y, z) space)† into two

† Note that tori are chosen only for convenience. In general, it is completely equivalent to use any shrinking
object characterized via only one parameter.
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or more shrunken and twisted tori completely lying inside the former one. The mapping
process is applied again to the tori created by the previous step, and so on. Obviously,
aftern steps we havemn tori. Herem denotes the number of shrunken tori. In the case of
nonoverlapping tori, their cross section develops asπa2mn, where parametera determines
the contraction strength. The equation for thenth level (n = 1, . . . ,∞) and for thelth torus
(l = 1, . . . , mn) reads as follows:

xl = cos(ϕ)

[
b + an cosγ +

n∑
i=1

a(i−1)(1− a) sin

(
iϕ + 2πkli

m

)]
yl = sin(ϕ)

[
b + an cosγ +

n∑
i=1

a(i−1)(1− a) sin

(
iϕ + 2πkli

m

)]
zl = an sinγ +

n∑
i=1

a(i−1)(1− a) cos

(
iϕ + 2πkli

m

) (1)

with the parametric representation of the torus by the angle variablesϕ, γ ∈ [0, 2π [. b

denotes the larger radius anda denotes the contraction parameter of the smaller radius. The
mn different tori are separated by the last term of the r.h.s. of equation (1). It contains a
sum with the running indexi over the parameterkli = 0, . . . , (m− 1) in the trigonometric
term of angleϕ. The termiϕ causes a twisting of the tori that increases linearly with
the iteration depth.kli can be seen as a digit which belongs to one of themn possible
n-tuples of the variation. Thus, thelth torus of thenth level is characterized by then-
tuple kl = {kl1, kl2, . . . , kln}. Note that, in any case, then-tuple must be identical in all
three equations (x, y, z). The first two steps of the underlying process (i.e. form = 2
andn = 0, 1, 2) are illustrated in figure 1. For enlightenment, the three control parameters
involved operate as follows: The first one, denoted bym, fixes the symmetry of the attractor
cross section (thus, called symmetry parameter). The second one, denoted bya, yields the
degree of contraction as to decide whether the cross section is connected or not (thus, called
contraction parameter). The third one, denoted byϕ, gives the angle related to thex-axis
at which the intersection along thez-axis takes place (thus, called intersection angle).

So far, the proposed mapping process seems to be similar to the well known solenoid
map introduced by Smale [8]. The fundamental difference lies in the topology of thenth
iterate. For the case of the Smale solenoid, there arises only one twisted torus. As a
consequence of the Moebius-band-like mapping process, the period length of thenth iterate
is 2n of the initial length (period doubling). To describe the Smale solenoid, formula (1) has
to be changed in the following way: the summation is replaced by a simple trigonometric
term with the argumentϕ/2n, i.e. the twisting of tori decreases with the iteration depth. In
our case, thenth iterate consists ofn independent tori, each one keeping the initial period
length. Note that then tori do not relate to a trajectory in phase space. Nevertheless, we
call the final structure forn→∞ an ‘attractor’.

Let us now focus on the influence of the contraction parametera. For example, in the
case ofm = 2 anda 6 1

2, the tori are totally separated. Form = 2 anda > 1
2, they

penetrate one another. Apparently, parametera determines the dimension of the attractor,
i.e. the dimension increases with increasinga. The cross sections (in analogy to Poincare
sections) of attractors are defined by the set of intersection points of the plane of constant
angleϕ. To give a vivid idea, the cross sections are nothing else but the set of intersection
points of the object with a half plane limited by thez-axis and, in addition, defined by the
intersection angleϕ. Depending on the parametersm, a and ϕ, we observe a variety of
fractal, self-similar objects. Those contain some well known structures such as the Cantor
set (m = 2, a = 1

3, andϕ = 0) or the Sierpinski gasket (m = 3, a = 1
2, andϕ = 0).
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Figure 1. Surface plots in the (x, y, z) space of a torus (a) iterated to two tori (b) and, after a
further iteration, to four tori (c).

The fractal dimension of the resulting cross section is determined by only two of the
parameters, namely, the symmetrym and the contraction parametera. For small values of
a, the fractal dimension can be evaluated as

df = logm

log 1/a
(2)
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Figure 2. Fractal dimension versus contraction parameter determined numerically for the case
m = 2, ϕ = 30 (dotted curve) and gained from equation (2) (full curve). The fractal dimension,
of course, has to saturate at a value of two. The deviation of the points of the numerically
evaluated dimensions fora > 0.7 are due to numerical uncertainties.

as shown in figure 2 for an exemplary case. For larger values, the fractal dimension of the
cross section saturates at the value of two where tori of different iteration paths overlap.
The effect of saturation sensitively depends on the values of all three parameters.

3. The numerical algorithm

For obtaining different cross sections of an attractor in a general approach, there are three
alternative paths. First, one can apply the iteration rule to an arbitrarily chosen initial
value. After having passed a transient, the iteration delivers points of the attractor. As
a consequence of the assumption of ergodicity, the approximated cross section can be
generated by taking a large enough number of iterations. Such a brute force technique has
the disadvantage of demanding a huge number of iterations for calculating a blow-up of the
cross section. Secondly, during the iteration process, we putm disks shrunken by the factor
a with a shifted centre inside the former ones. Again, the same disadvantage arises for a
blow-up of the cross section. While these two methods always calculate the whole section
even if one is interested in a blow-up only, there exists a third numerical algorithm which
overcomes that problem.

Hereto, we apply the basic idea used to uncover the famous Julia and Mandelbrot sets.
Instead of dealing with an attractor, our system is inverted to a repeller, i.e. the parameter of
contraction,a, changes into a parameter of expansion, 1/a. Of course, the direction of the
shift during iteration must be reversed. Points belonging to the cross section of the attractor
are identified by the fact that they do not leave the circle of unity under an infinite number
of (inversed) iteration. For that case, we are able to discriminate the cross section of the
attractor by scanning an area of initial values. A possible visualization of the neighbourhood
of the attractor is to colour each point representing an initial value in accordance with the
number of iterations which are necessary to leave the circle of unity.

Our iteration rule when subject to the coordinatesr =
√
x2+ y2 andz looks as follows:

rn+1 = rn − 1+ a − (1− a) sinϕ

a

zn+1 = zn + (1− a) cosϕ

a

(3)

with ϕ = arctan(y/x). The radii (both equal unity) are chosen such that the initial torus
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Figure 3. Plane of initial values of the coordinatesr andz coloured according to the iteration
depth (for details, see text). (a) Parameters:m = 2, a = 1

2 , andϕ = 0; window: r from 0 to

2, z from −1 to 1. (b) Parameters:m = 2, a = 1/
√

2, andϕ = 30◦; window: r from 0 to 2,
z from −1 to 1. (c) Blow-up of (b); window: r from 0.566 75 to 0.597 15,z from 0.537 35 to
0.567 75.

lies around thez-axis of the (x, y, z) space and also touches the origin. Note, however, one
complication. As mentioned above, if the parametera exceeds the value12, the tori intersect,
i.e. the disks representing the cross section of the tori overlap. There exists an area of initial
values which belongs to more than one disk. For convenience, we now restrict ourselves
to the casem = 2 (later, to the casesm = 3, 4, 5, and 6), without loss of generality. Each
disk represents one path of iteration in a binary tree. The overlap of different disks leads
to an uncertainty of the path. We, therefore, have to check all possible paths, in order to
end up with the correct (i.e. the largest) number of iterations for escape.

4. Cross sections of twofold symmetry

Figure 3 gives the(r, z) plane of initial values coloured according to the number of iterations
which are necessary to leave the circle of unity. While the parameterm was kept constant
(m = 2), examples for different values of the parametersa andϕ are illustrated. Part (a)
exhibits the case where the cross section of the attractor is simply connected and has the
form of a straight line (a = 1

2 andϕ = 0). Part (b) shows a dragon-like cross section that
again is simply connected, but has a totally perforated structure (a = 1/

√
2 andϕ = 30◦).

Finally, part (c) displays a blow-up of part (b).
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Figure 3. (Continued)

Next, we turn to the variety of structures generated by the iteration process. For
clarifying the actual shape of the cross sections of the attractor, we change the display
mode. That is, only points corresponding to initial values whose number of iterations for
escape exceeds the value of 50 are coloured black. Figure 4 shows examples of different
shapes in the(r, z) plane of initial values obtained form = 2 and different values ofa and
ϕ. Part (a) represents the cross section of the attractor for the case of the same parameter
values as chosen in figure 3(b). Here (in figure 4(a)), the cross section is simply connected,
in contrast to the situation illustrated in figure 4(b) where it is totally disconnected. There
(in figure 4(b)), parametera is lowered from 1/

√
2 to 0.68, whereas the section angle

is kept constant atϕ = 30◦. Figures 4(c) and (d) are further examples of connected
attractor cross sections, the shape of which resembles a snowflake (a = 1/

√
2 andϕ = 60◦)

and an irregular sponge (a = 1/
√

2 andϕ = 80◦), respectively. Note that these special
fractals (form = 2) have been previously observed elsewhere [3] by analysing a complex
iterated function system†. There, we find a detailed discussion on connectivity. In case
of the parameter seta = 1/

√
2 and ϕ = 90◦, the situation is similar to that given at

a = 1
2 andϕ = 0 (see figure 3(a)), i.e. the structure is connected without any perforation.

The difference lies in the fact that the former case excels by a compact rectangular form
(representing a two-dimensional object), while the latter case ends up with a straight line

† While Barnsley uses a randomly driven switch for the sign of the iterated function system, our algorithm directly
evaluates all relevant paths of the binary tree.
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Figure 3. (Continued)

(representing a one-dimensional object). For arriving at another well introduced fractal
geometry, the so-called Swiss flag (for more details, see [9]), we have fixed parametera at
the value 0.69 in figure 4(e).

5. Cross sections of higher symmetry

According to the display mode used in figure 4, figure 5 exhibits further examples of cross
sections in the (r, z) plane of initial values obtained form > 2 and different values ofa
and ϕ. The iteration depth is chosen to be 10 (instead of 50, as in figure 4). Part (a)
shows the well known Sierpinski gasket for the parameter setm = 3, a = 1

2, andϕ = 0,
part (b) shows the case forϕ = 60◦ and unchanged other parameters. The quadratic Swiss
flag in part (c) is calculated atm = 4, a = 0.48, andϕ = 0, in part (d) analogously at
m = 4, a = 0.45, andϕ = 60◦. Eventually, parts (e) and (f ) represent examples of higher
symmetry gained at the parameter valuesm = 5, a = 0.4, ϕ = 0 andm = 6, a = 0.4,
ϕ = 0, respectively.

6. Conclusion

We have introduced an algorithm of an iteration rule for real numbers capable of generating
a wide variety of attractor cross sections. Their structure can be either connected or
disconnected as well as perforated or not—so far demonstrated by visualization. None
the less, they all have a self-similarity in common with different types of symmetry.
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Figure 4. Plane of initial values of the coordinatesr and z with points coloured black for an
iteration depth larger than 50. (a) Parameters:m = 2, a = 1/

√
2, andϕ = 30◦. (b) Parameters:

m = 2, a = 0.68, andϕ = 30◦. (c) Parameters:m = 2, a = 1/
√

2, andϕ = 60◦. (d)
Parameters:m = 2, a = 1/

√
2, andϕ = 80◦. (e) Parameters:m = 2, a = 0.69, andϕ = 90◦.

All windows: r from 0 to 2,z from −1 to 1.

Our algorithm possesses the advantage to colour the actual iteration depth and, hence, to
discriminate the neighbourhood of the attractor. Furthermore, any blow-up can be calculated
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Figure 5. Plane of initial values of the coordinatesr and z with points coloured black for an
iteration depth larger than 10. (a) Parameters:m = 3, a = 1

2 , andϕ = 0. (b) Parameters:
m = 3, a = 1

2 , andϕ = 60◦. (c) Parameters:m = 4, a = 0.48, andϕ = 0. (d) Parameters:
m = 4, a = 0.45, andϕ = 60◦. (e) Parameters:m = 5, a = 0.4, andϕ = 0. (f ) Parameters:
m = 6, a = 0.4, andϕ = 0. All windows: r from 0 to 2,z from −1 to 1.



1896 A Kittel et al

easily. The present method has the potential to analyse the attractor of any dynamical system,
provided its cross section is the aim of interest. Moreover, one can perceive the calculus as
a mathematical operation that projects the set of initial values to the set of points belonging
to the cross section of the attractor. Certainly, the underlying mechanism possesses a
wide universality in the sense that the class of created structures exceeds those gained by
complex-analytic functions which, for example, are restricted to a twofold symmetry.
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